Extensions 1→N→G→Q→1 with N=C32 and Q=C2xD4

Direct product G=NxQ with N=C32 and Q=C2xD4
dρLabelID
D4xC3xC672D4xC3xC6144,179

Semidirect products G=N:Q with N=C32 and Q=C2xD4
extensionφ:Q→Aut NdρLabelID
C32:(C2xD4) = C2xS3wrC2φ: C2xD4/C2D4 ⊆ Aut C32124+C3^2:(C2xD4)144,186
C32:2(C2xD4) = S3xD12φ: C2xD4/C4C22 ⊆ Aut C32244+C3^2:2(C2xD4)144,144
C32:3(C2xD4) = D6:D6φ: C2xD4/C4C22 ⊆ Aut C32244C3^2:3(C2xD4)144,145
C32:4(C2xD4) = C2xD6:S3φ: C2xD4/C22C22 ⊆ Aut C3248C3^2:4(C2xD4)144,150
C32:5(C2xD4) = C2xC3:D12φ: C2xD4/C22C22 ⊆ Aut C3224C3^2:5(C2xD4)144,151
C32:6(C2xD4) = S3xC3:D4φ: C2xD4/C22C22 ⊆ Aut C32244C3^2:6(C2xD4)144,153
C32:7(C2xD4) = Dic3:D6φ: C2xD4/C22C22 ⊆ Aut C32124+C3^2:7(C2xD4)144,154
C32:8(C2xD4) = C6xD12φ: C2xD4/C2xC4C2 ⊆ Aut C3248C3^2:8(C2xD4)144,160
C32:9(C2xD4) = C2xC12:S3φ: C2xD4/C2xC4C2 ⊆ Aut C3272C3^2:9(C2xD4)144,170
C32:10(C2xD4) = C3xS3xD4φ: C2xD4/D4C2 ⊆ Aut C32244C3^2:10(C2xD4)144,162
C32:11(C2xD4) = D4xC3:S3φ: C2xD4/D4C2 ⊆ Aut C3236C3^2:11(C2xD4)144,172
C32:12(C2xD4) = C6xC3:D4φ: C2xD4/C23C2 ⊆ Aut C3224C3^2:12(C2xD4)144,167
C32:13(C2xD4) = C2xC32:7D4φ: C2xD4/C23C2 ⊆ Aut C3272C3^2:13(C2xD4)144,177


׿
x
:
Z
F
o
wr
Q
<