Extensions 1→N→G→Q→1 with N=C32 and Q=C2×D4

Direct product G=N×Q with N=C32 and Q=C2×D4
dρLabelID
D4×C3×C672D4xC3xC6144,179

Semidirect products G=N:Q with N=C32 and Q=C2×D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C2×D4) = C2×S3≀C2φ: C2×D4/C2D4 ⊆ Aut C32124+C3^2:(C2xD4)144,186
C322(C2×D4) = S3×D12φ: C2×D4/C4C22 ⊆ Aut C32244+C3^2:2(C2xD4)144,144
C323(C2×D4) = D6⋊D6φ: C2×D4/C4C22 ⊆ Aut C32244C3^2:3(C2xD4)144,145
C324(C2×D4) = C2×D6⋊S3φ: C2×D4/C22C22 ⊆ Aut C3248C3^2:4(C2xD4)144,150
C325(C2×D4) = C2×C3⋊D12φ: C2×D4/C22C22 ⊆ Aut C3224C3^2:5(C2xD4)144,151
C326(C2×D4) = S3×C3⋊D4φ: C2×D4/C22C22 ⊆ Aut C32244C3^2:6(C2xD4)144,153
C327(C2×D4) = Dic3⋊D6φ: C2×D4/C22C22 ⊆ Aut C32124+C3^2:7(C2xD4)144,154
C328(C2×D4) = C6×D12φ: C2×D4/C2×C4C2 ⊆ Aut C3248C3^2:8(C2xD4)144,160
C329(C2×D4) = C2×C12⋊S3φ: C2×D4/C2×C4C2 ⊆ Aut C3272C3^2:9(C2xD4)144,170
C3210(C2×D4) = C3×S3×D4φ: C2×D4/D4C2 ⊆ Aut C32244C3^2:10(C2xD4)144,162
C3211(C2×D4) = D4×C3⋊S3φ: C2×D4/D4C2 ⊆ Aut C3236C3^2:11(C2xD4)144,172
C3212(C2×D4) = C6×C3⋊D4φ: C2×D4/C23C2 ⊆ Aut C3224C3^2:12(C2xD4)144,167
C3213(C2×D4) = C2×C327D4φ: C2×D4/C23C2 ⊆ Aut C3272C3^2:13(C2xD4)144,177


׿
×
𝔽